Corrigé de devoir non surveillé

Racines p-ièmes réelles de I_n

Partie A – Généralités

A.1 $\mathcal{R}_n(p)$ ne comprend pas la matrice nulle, ce n'est donc pas un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

A.2 Sachant $A^p = I_n$ et $p \ge 2$, on a $A^p = AA^{p-1} = I_n$: $A \in GL_n(\mathbb{R})$ (son inverse est A^{p-1}). De plus $(A^{-1})^p A^p = I_n$ par associativité de la multiplication des matrices carrées, et finalement $(A^{-1})^p = I_n$ ce qui signifie $A^{-1} \in \mathcal{R}_n(p)$.

A.3 On montre (par récurrence ou autrement) que pour tout $p \in \mathbb{N}$,

$$(P^{-1}AP)^p = (P^{-1}A^pP)$$

Par suite, si $A \in \mathcal{R}_n(p)$ et $P \in GL_n(\mathbb{R})$, alors $P^{-1}AP \in \mathcal{R}_n(p)$.

A.4 Si $A = diag(\lambda_1, \lambda_2, ..., \lambda_n)$, alors $A^p = diag(\lambda_1^p, \lambda_2^p, ..., \lambda_n^p)$, donc $A \in \mathcal{R}_n(p) \cap \mathcal{D}_n(p)$, si et seulement si les λ_i vérifient $\lambda_i^p = 1$. Les coefficients λ_i étant réels, si p est un nombre impair, il y a une solution unique $A = I_n$, alors que si p est pair, chaque λ_i peut prendre la valeur 1 ou -1, ce qui donne 2^n solutions.

 $\mathcal{R}_n(p) \cap \mathcal{D}_n(\mathbb{R})$ est fini, de cardinal 1 ou 2^n selon que n est impair ou pair

A.5 Soit $q \ge 2$ et notons $d = p \land q$. Il existe deux entiers p_1 et p_2 premiers entre eux tels que $p = dp_1$ et $q=dp_2$. Dans ces conditions, $a\in\mathcal{R}_n(p)\cap\mathcal{R}_n(q)$ équivaut à : $A^{dp_1}=I_n$ et $A^{dp_2}=I_n$, il en résulte d'une part que si $A \in \mathcal{R}_n(d)$, alors $a \in \mathcal{R}_n(p) \cap \mathcal{R}_n(q)$. Et inversement, si $a \in \mathcal{R}_n(p) \cap \mathcal{R}_n(q)$, alors comme p_1 et p_2 sont premiers entre eux, le théorème de Bézout fournit u et v tels que $1=p_1u+p_2v$, d'où $A^{d} = A^{d(p_1 u + p_2 v)} = (A^p)^u (A^q)^v = I_n I_n = I_n, \text{ donc } A \in \mathcal{R}_n (d).$ $\boxed{\mathcal{R}_n(p) \cap \mathcal{R}_n(q) = \mathcal{R}_n(d).}$

$$\mathcal{R}_n(p) \cap \mathcal{R}_n(q) = \mathcal{R}_n(d).$$

Partie B – Étude de $\mathcal{R}_2(2)$

B.1 $A \in \mathcal{R}_2(2) \setminus \{I_2, -I_2\}$, et $u \in \mathcal{L}(E)$, dont la matrice dans \mathcal{B} est A.

$$\operatorname{Ker}(u - Id_E) \oplus \operatorname{Ker}(u + Id_E) = E.$$

a Si $x \in \ker(u - \operatorname{Id}_E) \cap \ker(u + \operatorname{Id}_E)$, alors u(x) = x = -x, donc x est nul, on en déduit $\ker(u - \operatorname{Id}_E) \cap$ $\ker\left(u+\operatorname{Id}_{E}\right)\subset\left\{0_{E}\right\}$, puis l'égalité car l'inclusion inverse est évidente D'autre part, il est clair que pour tout x de E, on a : $x=\frac{1}{2}\left(x-u\left(x\right)\right)+\frac{1}{2}\left(x+u\left(x\right)\right)$, et on vérifie que $\frac{1}{2}\left(x-u\left(x\right)\right)\in\ker\left(u+\operatorname{Id}_{E}\right)$, tandis que $\frac{1}{2}(x+u(x)) \in \ker(u-\operatorname{Id}_E)$. Ainsi $\ker(u-\operatorname{Id}_E) \oplus \ker(u+\operatorname{Id}_E) = E$. On a reconnu dans u la symétrie par rapport à $\ker (u - \operatorname{Id}_E)$, parallèlement à $\ker (u + \operatorname{Id}_E)$.

b En prenant des vecteurs non nuls respectifs f_1 et f_2 de ker $(u - \operatorname{Id}_E)$ et ker $(u + \operatorname{Id}_E)$ (ce qui est possible, car $u \neq \operatorname{Id}_E$ et $u \neq -\operatorname{Id}_E$), la matrice de u dans (f_1, f_2) est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

c Le passage de la base $\mathcal B$ à cette base particulière s'effectue à l'aide d'une matrice de passage P = 0

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de déterminant $ad - bc \neq 0$:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = P^{-1}AP$$

$$A = P \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} P^{-1} = \frac{1}{ad - bc} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$= \frac{1}{ad - bc} \begin{pmatrix} ad + bc & -2ab \\ 2cd & -bc - ad \end{pmatrix}$$

B.2 Si on prend deux éléments A et B de \mathcal{R}_2 (2) qui ne commutent pas, il n'y a aucune raison pour que AB soit encore dans \mathcal{R}_2 (2), par exemple : $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ sont dans \mathcal{R}_2 (2), alors que $AB = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ et $(AB)^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Géométriquement, cela signifie qu'en général, deux symétries du plan ne commutent pas et que le produit de deux symétries axiales n'est pas une symétrie axiale.

Partie C – Étude de $\mathcal{R}_2(3)$

C.1

a Soit $x \in F \cap G$, alors v(x) = x et $v^2(x) + v(x) + x = 0_E$, donc $3x = 0_E$, d'où $x = 0_E$, ainsi : $F \cap G \subset \{0_E\}$, l'inclusion inverse est immédiate : $F \cap G = \{0\}$.

 $\mathbf{b} \text{ Soit } x \in E: \quad v\left(\frac{1}{3}\left(x+v\left(x\right)+v^2\left(x\right)\right)\right) = \frac{1}{3}\left(v\left(x\right)+v^2\left(x\right)+x\right), \text{ donc } \boxed{\frac{1}{3}\left(x+v\left(x\right)+v^2\left(x\right)\right) \in F.}$ D'autre part,

$$(v^2 + v + \operatorname{Id}_E) \left(\frac{1}{3} (2x - v(x) - v^2(x))\right)$$

 $=1_{\overline{3(2v^{2}(x)-x-v(x))+\frac{1}{3}(2v(x)-v^{2}(x)-x)+\frac{1}{3}(2x-v(x)-v^{2}(x))=0_{E}}}, \text{donc}\left[\frac{1}{3}\left(2x-v\left(x\right)-v^{2}\left(x\right)\right)\in G.\right]$ **c** Tout vecteur x de E pouvant s'écrire $x=\frac{1}{3}\left(x+v\left(x\right)+v^{2}\left(x\right)\right)+\frac{1}{3}\left(2x-v\left(x\right)-v^{2}\left(x\right)\right)$, on en déduit : $E=F\oplus G.$

C.2 Si dim F = 2, alors F = E, donc $M = I_2$.

C.3 Supposons dim F = 1.

a Comme $F \oplus G = E$, G est de dimension 1. Il existe donc une base (g_1, g_2) de E, telle que $g_1 \in F$ et $g_2 \in G$.

b On a $v(g_1) = g_1$ et $v^2(g_2) + v(g_2) + g_2 = 0_E$ car $g_2 \in G$, dans la base \mathcal{B}' v a pour matrice $M' = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}$, d'où $M'^2 = \begin{pmatrix} 1 & a + ab \\ 0 & b^2 \end{pmatrix}$, on en déduit $\begin{cases} a + ab + a + 0 = 0 \\ b^2 + b + 1 = 0 \end{cases}$, ce qui est impossible avec b réel. Conclusion, F n'est pas de dimension 1.

C.4

a Si la famille $(e_1, v(e_1))$ était liée, il existerait un couple $(\alpha, \beta) \neq (0, 0)$ tel que $\alpha e_1 + \beta v(e_1) = 0_E$, comme β ne peut pas être nul sans que α le soit, il existe λ tel que $v(e_1) = \lambda e_1$, alors $v^3(e_1) = \lambda^3 e_1 = e_1$, donc $\lambda = 1$, ce qui contredit l'hypothèse dim F = 0. Enfin comme dim E = 2, la famille libre $(e_1, v(e_1))$ est une base de E.

 $\mathbf{b} \text{ Soit } M' \text{ la matrice de } v \text{ dans cette base, } M' = \begin{pmatrix} 0 & x \\ 1 & y \end{pmatrix}, \text{ où } v\left(v\left(e_1\right)\right) = xe_1 + yv\left(e_1\right). \text{ Comme } \\ \dim G = 2, \text{ on a } v^2\left(e_1\right) + v\left(e_1\right) + e_1 = 0_E, \text{ donc } x = y = -1. \text{ Donc la matrice de } v \text{ dans } \mathcal{B}' \text{ est } M' = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \\ \text{enfin la matrice de passage de } \mathcal{B} \text{ à } \mathcal{B}' \text{ est } P = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}, \text{ d'inverse } P^{-1} = \frac{1}{b} \begin{pmatrix} b & -a \\ 0 & 1 \end{pmatrix}. \text{ On en déduit que la } \\ \text{matrice de } v \text{ dans la base } \mathcal{B} \text{ est } M = PM'P^{-1} = \frac{1}{b} \begin{pmatrix} ab & -1 - a - a^2 \\ b^2 & -ab - b \end{pmatrix}.$