Devoir non surveillé

Encore des suites

Exercice 1 : Séries absolument convergentes

On considère deux suites réelles (a_n) et (b_n) , ainsi que les suites de termes généraux $u_n = \sum_{k=0}^n a_k$ et $v_n = \sum_{k=0}^n b_k$.

1 On suppose dans cette question les suites a et b à termes positifs.

- a Montrer que si $a \leq b$ et v converge, alors u converge.
- **b** Montrer que si $a_n = O(b_n)$ et v converge, alors u converge.

2 On suppose b à termes positifs. Montrer que si $a_n = O(b_n)$ et v converge, alors u converge.

3 On dit que la série $\sum a_n$ de terme général (a_n) est convergente si u converge. On dit que cette série est absolument convergente si la série de terme général $|a_n|$ est convergente. On dit que cette série est semi-convergente si elle est convergente mais non absolument convergente.

- a Montrer que si $\sum a_n$ converge, alors (a_n) tend vers 0, mais que la réciproque est fausse.
- b Donner, en le justifiant, un exemple de série semi-convergente.
- c Montrer que toute série absolument convergente est convergente.

Exercice 2 : $(\tan(n))$

Montrer que $(\tan(n))$ est bien définie et divergente de seconde espèce.

Remarque : on supposera l'irrationalité de π connue.

Exercice 3 : Sur la densité

1 Montrer que $D = \{2^a 5^b, (a, b) \in \mathbb{Z}^2\}$ est dense dans \mathbb{R}_+ .

 $\mathbf{2}$

- **a** Montrer que le sous-groupe $\mathbb{Z} + \pi \mathbb{Z}$ de \mathbb{R} est dense dans \mathbb{R} (on admettra que π est irrationnel). En déduire que la suite $(\sin(n))_{n \in \mathbb{N}}$ diverge.
 - b Retrouver ce résultat par un raisonnement élémentaire.

Exercice 4: Développements asymptotiques

1 Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite donnée par u_1 et 1, et, pour tout $n\in\mathbb{N}^*$: $u_{n+1}=\ln(n+u_n)$. Montrer que cette suite est définie, tend vers $+\infty$, et plus précisément, que :

$$u_n = \ln(n) + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right).$$

2 Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $x + \ln(x) = n$ d'inconnue $x \in \mathbb{R}_+^*$ possède une unique solution que nous noterons u_n .

Montrer que (u_n) tend vers $+\infty$, et, plus précisément, que :

$$u_n = n - \ln(n) + o(\ln(n))$$
.