Corrigé de devoir non surveillé

Exercice 1 : Groupe dont tout élément est son propre symétrique

1 Fait en TD.

2 Supposons $H \cap aH \neq \emptyset$: il existe des éléments h et h' de H tels que h' = ah, donc tels que $a = h'h^{-1} \in H$, ce qui est absurde : $H \cap aH = \emptyset$.

 $H \cup aH$ est clairement une partie non vide de G, stable par passage au symétrique, puisque tout élément est son propre symétrique. Vérifions qu'elle est stable par la loi de H: soit $h, h' \in H$. On a, puisque G est abélien et $a^2 = 1 : hh' \in H$, $(ah)h' \in aH$, et $(ah)(ah') = hh' \in H$, ce qui montre le résultat voulu. $H \cup aH$ est bien un sous-groupe de G.

3 Soit N le cardinal de G, et écrivons $G = \{g_1, \dots, g_N\}$. enfin, posons $G_0 = \{1\}$ et, pour tout $i \in [0, N-1]$,

$$G_{i+1} = G_i \cup g_{i+1}G_i.$$

D'après la question précédente, pour tout $i \in [0, N]$, G_i est un sous-groupe de G, dont le cardinal est une puissance de 2 (pour l'hérédité, $G_{i+1} = G_i$ si $g_{i+1} \in G_i$, et $|G_{i+1}| = 2|G_i|$ sinon).

Enfin, il est clair que $G_N = G$, d'où le résultat voulu.

Réciproquement, pour tout $n \in \mathbb{N}^*$, $\{-1,1\}^n$ est un groupe de cardinal 2^n tel que $g^2 = 1$ pour tout $g \in G$.

Exercice 2 : Sous-anneau dense de \mathbb{R}

1 Fait en TD.

2 Le sens direct est évident (par définition de la densité). Réciproquement, supposons disposer de $\delta \in]0,1[\cap A]$. Pour tout $n \in \mathbb{N}^*$, $\delta^n \in A \cap \mathbb{R}_+^*$, et $\lim_n \delta^n = 0$, donc inf $A \cap \mathbb{R}_+^* = 0$. La question précédente permet d'affirmer que A est dense dans \mathbb{R} .