Corrigé de devoir non surveillé

Sur les fonctions lipschitziennes

Partie A – Généralités sur les fonctions lipschitziennes

Pour tout élément φ de \mathcal{L} , K_{φ} désignera un réel tel que φ soit K_{φ} -lipschitzienne.

A.1 La fonction identiquement nulle sur \mathbb{R} est 0-lipschitzienne, donc \mathcal{L} n'est pas vide. Si f et g sont des éléments de \mathcal{L} , et λ et μ sont deux réels quelconques, alors, pour tous réels x et y, on a :

$$|(\lambda f + \mu g)(y) - (\lambda f + \mu g)(x)| \le (|\lambda| K_f + |\mu| K_g)|y - x|$$

 \mathcal{L} est donc stable par combinaison linéaire.

A.2 Si f et g sont deux éléments de \mathcal{L} , alors leur composée $g \circ f$, élément de \mathcal{F} , est (K_gK_f) -lipschitzienne, et appartient donc à \mathcal{L} .

A.3 Soit f et g deux fonctions bornées de \mathcal{L} . Soit M_f et M_g deux réels tels que $|f| \leq M_f$ et $|g| \leq M_g$. Pour tous réels x et y, on a :

$$\begin{aligned} |(fg)(y) - (fg)(x)| &= |f(y)g(y) - f(x)g(x)| = |f(y)g(y) - f(y)g(x) + f(y)g(x) - f(x)g(x)| \\ &\leq |f(y)g(y) - f(y)g(x)| + |f(y)g(x) - f(x)g(x)| = |f(y)||g(y) - g(x)| + |g(x)||f(y) - f(x)| \\ &\leq (M_f K_q + M_q K_f)|y - x| \end{aligned}$$

Le produit fg est donc un élément de \mathcal{L} .

Si f et g ne sont pas toutes les deux bornées, fg n'est pas nécessairement un élément de \mathcal{L} , comme le montre l'exemple où $f = g = \operatorname{Id}_{\mathbb{R}}$ (la fonction carré n'est pas lipschitzienne car la suite des taux d'accroissement de cette fonction entre n et n+1 (de terme général 2n+1) n'est pas bornée).

A.4 Soit $f \in \mathcal{L}$. On a en particulier, pour tout réel x,

$$|f(x)| = |f(x) - f(0)| + |f(0)| \le |f(x) - f(0)| + |f(0)| \le K_f|x| + |f(0)|.$$

Il existe donc deux réels positifs A et B (par exemple $A = K_f$ et B = |f(0)|) tels que pour tout réel x, on ait :

$$|f(x)| \leq A|x| + B.$$

A.5 Soit $f \in \mathcal{F}$. On suppose qu'il existe un réel positif M tel que pour tous réels x et y vérifiant $|y-x| \leq 1$, on ait $|f(y)-f(x)| \leq M|y-x|$. Soit x et y deux réels vérifiant x+1 < y. L'idée est d'intercaler les entiers entre x et y. Soit [p,q] l'ensemble des entiers strictement compris entre x et y. On a

$$|f(y) - f(x)| = |f(y) - f(q)| + \sum_{k=p}^{q-1} (f(k+1) - f(k)) + f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| \le |f(y) - f(q)| + \sum_{k=p}^{q-1} |f(k+1) - f(k)| + |f(p) - f(x)| + |f(p) - f(x)|$$

$$\leq M(y-q+\sum_{k=p}^{q-1}((k+1)-(k))+p-x)=M(y-x).$$

Par conséquent, f est M-lipschitzienne, et appartient donc à \mathcal{L} .

A.6 L'application t_{α} de translation par α est 1-lipschitzienne, donc la composée $f \circ t_{\alpha} : x \mapsto f(x + \alpha)$, est un élément de \mathcal{L} .

A.7 D'après les rappels, et comme cosinus est majorée par 1 en valeur absolue, on a, pour tous réels x et y,

$$|\sin(y) - \sin(x)| = \left| 2\sin\left(\frac{y-x}{2}\right)\cos\left(\frac{y+x}{2}\right) \right|$$

 $\leq 2\left| \frac{y-x}{2} \right| = |y-x|.$

La fonction sinus est donc 1-lipschitzienne.

De la relation $\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$ (valable pour tout réel x), et de la question précédente, on déduit que la fonction cosinus est également 1-lipschitzienne.

A.8 Voir le cours (la fonction $x \mapsto \sqrt{|x|}$, bien qu'uniformément continue sur \mathbb{R} , n'est pas lipschtizienne).

Partie B – Une équation fonctionnelle dans \mathcal{L}

B.1 Soit $F \in \mathcal{F}$ vérifiant \mathcal{E} .

Comme F est solution de \mathcal{E} , la formule annoncée est vraie pour n=1.

De plus, si la formule est vraie au rang $n \in \mathbb{N}^*$, alors, pour tout réel x, on a :

$$F(x) = \lambda^{n} (F(x + na) + \sum_{k=0}^{n-1} \lambda^{k} f(x + ka)) = \lambda^{n} (\lambda F(x + na + a) + f(x + na)) + \sum_{k=0}^{n-1} \lambda^{k} f(x + ka)$$

$$= F(x + (n+1)a) + \sum_{k=0}^{n} \lambda^{k} f(x + ka)$$

La formule est donc vérifiée au rang n+1.

On en déduit donc par récurrence que pour tout réel x, et tout entier naturel non nul n, on a :

$$F(x) = \lambda^n F(x + na) + \sum_{k=0}^{n-1} \lambda^k f(x + ka).$$

B.2 On suppose ici $|\lambda| < 1$.

a On suppose que F et G sont deux solutions de \mathcal{E} appartenant à \mathcal{L} . On sait d'après A.4 qu'il existe des réels positifs A, B, C, D tels que $|F(x)| \leq A|x| + B$ et $|G(x)| \leq C|x| + D$, pour tout réel x. D'après la question précédente, on a, pour tout entier naturel non nul n, et tout réel x:

$$|F(x) - G(x)| = |\lambda^n (F(x + na) - G(x + na))| \le |\lambda|^n ((|A| + |C|)|x + na| + |B| + |D|)$$

Quand n tend vers l'infini, le membre de droite tend vers 0 (car $|\lambda| < 1$). On a donc F(x) = G(x).

 \mathcal{E} admet donc au plus une solution dans \mathcal{L} .

b Une solution de \mathcal{E} est la fonction constante de valeur $\frac{1}{1-\lambda}$. Cette application est évidemment lipschitzienne. D'après la question précédente, l'ensemble des solutions de \mathcal{E} dans \mathcal{L} est donc le singleton

$$\left\{x \mapsto \frac{1}{1-\lambda}\right\}.$$

c La fonction G (bien définie car $1 - 2\lambda \cos(a) + \lambda^2 = (1 - \lambda e^{ia})(1 - \lambda e^{-ia}) \neq 0$) appartient à \mathcal{L} , en tant que combinaison linéaire de telles fonctions. De plus, pour tout réel x, on a

$$G(x) - \lambda G(x+a) = \frac{\cos(x) - \lambda \cos(x-a) - \lambda \cos(x+a) + \lambda^2 \cos(x)}{1 - 2\lambda \cos(a) + \lambda^2} = \cos(x).$$

G est donc une solution de \mathcal{E} appartenant à \mathcal{L} : c'est l'unique telle fonction. L'ensemble des solutions de \mathcal{E} appartenant à \mathcal{L} est donc ici le singleton $\{G\}$.

d De l'égalité $\sin(x) = \cos\left(x - \frac{\pi}{2}\right)$ (valable pour tout réel x), et d'après la forme de \mathcal{E} , on déduit de la question précédente que l'ensemble des solutions de \mathcal{E} dans le cas où f est la fonction sinus est le singleton $\{H\}$, où, pour tout réel x,

$$H(x) = \frac{\sin(x) - \lambda \sin(x - a)}{1 - 2\lambda \cos(a) + \lambda^2}$$

B.3 On suppose ici $\lambda = 1$.

a S'il existe une fonction $F \in \mathcal{L}$ vérifiant \mathcal{E} , alors

$$|f(x)| = |F(x) - F(x+a)| \leqslant K_F|a|$$

pour tout réel x, et f est donc bornée.

 $\mathbf{b} \ F : x \mapsto \sin\left(\frac{2\pi x}{a}\right)$ est non nulle, lipschitzienne (car composée de telles fonctions) et a-périodique, donc vérifie F(x) - F(x+a) = 0, pour tout réel x.

c Si H est une solution de \mathcal{E} dans \mathcal{L} , alors toutes les fonctions H + nF (où F est la fonction définie à la question précédente), où n décrit \mathbb{N} , sont distinctes deux à deux, appartiennent à \mathcal{L} , et vérifient \mathcal{E} .

 ${\bf d}$ L'idée est de faire tendre λ vers 1 dans l'expression de G en B.2.c. On vérifie ensuite que la fonction obtenue

$$\psi: x \mapsto \frac{\cos(x) - \cos(x - a)}{2(1 - \cos(a))},$$

est bien une solution de \mathcal{E} dans \mathcal{L} .

e Si $\cos(a) = 1$, a est un multiple entier non nul de 2π : $a = 2k\pi$, pour un certain entier non nul k. Supposons que \mathcal{E} admette une solution F dans \mathcal{L} . On a alors

$$F(x) = F(x + 2kn\pi) + n\cos(x)$$

pour tout réel x et tout entier naturel non nul n, d'après B.1. Ceci donne en particulier (en prenant x = 0 puis $x = \pi$), pour tout entier naturel n:

$$F((2kn+1)\pi) - F(2nk\pi) = 2n + F(\pi) - F(0)$$

La suite des taux d'accroissement de F entre $2kn\pi$ et $(2kn+1)\pi$ $(n\in\mathbb{N}^*)$ n'est donc pas bornée : F ne peut être lipschitzienne.