Corrigé de devoir non surveillé

Exercice 1: Fonctions presque doublement surjectives

1

$$\exists \beta_0 \in F, \forall \beta \in F \setminus \{\beta_0\}, \exists (\alpha, \alpha') \in E^2, (\alpha \neq \alpha') \land (f(\alpha) = \beta) \land (f(\alpha') = \beta).$$

2 Soit $\lambda \in \mathbb{C}$. On cherche les $z \in \mathbb{C}$ tels que $h(z) = \lambda$, *i.e.*

$$az^2 + bz + c - \lambda = 0.$$

Cette équation du second degré en z (car $a \neq 0$) admet toujours au moins une solution, donc h est surjective. Plus précisément, si $b^2 - 4a(c - \lambda) \neq 0$, i.e. si $\lambda \neq c - \frac{b^2}{4a}$, alors elle en admet deux (distinctes), donc h est presque doublement surjective.

Dans le cas où $\lambda = c - \frac{b^2}{4a}$, elle admet une unique solution, et h n'est donc pas doublement surjective.

3

a Soit $f: E \to F$ et $g: F \to G$ deux fonctions presque doublement surjectives.

Il existe $z_0 \in G$ tel que tout élément de G distinct de z_0 admette au moins deux antécédents par g dans F. Soit $z \in G \setminus \{z_0\}$, et y_1, y_2 deux éléments distincts de F tels que $g(y_1) = g(y_2) = z$. Puisque f est presque doublement surjective, parmi ces deux éléments de F, l'un au moins – mettons y_1 – admet au moins deux antécédents distincts par f, mettons $x_{1,1}$ et $x_{2,1}$. $x_{1,1}$ et $x_{2,1}$ sont alors deux antécédents (distincts) de z par $g \circ f$: $g \circ f$ est presque doublement surjective.

b La fonction f proposée par l'énoncé est presque surjective, puisque seul -1 n'a pas d'antécédent par f, mais $f \circ f$ est constante de valeur 1, donc $f \circ f$ n'est pas presque surjective.

c La fonction exponentielle complexe (de $\mathbb C$ dans $\mathbb C$) est presque doublement surjective, car tout complexe non nul admet au moins deux antécédents (et même une infinité, différant tous d'un multiple entier de $2i\pi$) par cette fonction. Composée de l'exponentielle (de $\mathbb C$ dans $\mathbb C$) par elle-même, φ est donc presque doublement surjective, et est à ce titre presque surjective.

Remarque: bien sûr, on pouvait également donner une preuve directe de ce fait.