Corrigé de devoir non surveillé

Problème – Hyperbolisme

Partie A – Hyperbole équilatère et loi ∇

A.1 cf le fichier Maple.

A.2 Soit t un réel non nul, et M le point de \mathcal{H} paramètre t.

a L'affixe de M est $\operatorname{ch}(t) + i \operatorname{sh}(t)$. L'affixe du symétrique (orthogonal) M' de M par rapport à l'axe des abscisses est le conjugué de $\operatorname{ch}(t) + i \operatorname{sh}(t)$, soit $\operatorname{ch}(t) - i \operatorname{sh}(t)$.

b Le cercle de diamètre [MM'] est le cercle de centre d'affixe $\operatorname{ch}(t)$ et de rayon $|\operatorname{sh}(t)|$. Son intersection avec l'axe des abscisses est donc constituée des points d'affixes $\operatorname{ch}(t) + \operatorname{sh}(t) = e^t$ et $\operatorname{ch}(t) - \operatorname{sh}(t) = e^{-t}$. L'affixe du vecteur \overrightarrow{JM} est $\operatorname{ch}(t) + i$ $\operatorname{sh}(t) - e^t = -\frac{e^t - e^{-t}}{2} + i$ $\operatorname{sh}(t) = \operatorname{sh}(t)(-1+i)$. Il s'agit bien d'un nombre non nul puisque $t \neq 0$. Un argument de (-1+i) étant $\frac{3\pi}{4}$, un argument de l'affixe de \overrightarrow{JM} est :

- 1. $\frac{3\pi}{4}$ si t > 0;
- 2. $-\frac{\pi}{4}$ si t < 0.

A.3 Soit t un réel, et M le point de \mathcal{H} paramètre t, i.e. le point d'affixe $\mathrm{ch}(t)+i$ sh(t). Le point à l'intersection de la droite (OM) et de la droite d'équation x=1 est donc le point dont l'affixe est un multiple réel de $\mathrm{ch}(t)+i$ sh(t) et de partie réelle 1: c'est donc le point d'affixe $\frac{1}{\mathrm{ch}(t)}(\mathrm{ch}(t)+i$ sh(t))=1+i th(t).

A.4

a L'intersection de \mathcal{D} avec la droite d'équation y=1 est le point dont l'affixe est un multiple réel de $e^t+i\,e^{-t'}$ et de partie imaginaire 1: c'est donc le point d'affixe $e^{t'}(e^t+i\,e^{-t'})=e^{t+t'}+i.$

b K étant supposé construit, son projeté orthogonal sur l'axe des abscisses est le point d'affixe $e^{t+t'}$. Le point de \mathcal{H} de paramètre t+t' s'obtient alors par exemple comme intersection de \mathcal{H} avec la droite passant par les points d'affixes $e^{t+t'}$ et $i e^{t+t'}$.

A.5 cf le fichier Maple.

Partie B – Construction géométrique de \mathcal{H}

B.1

 $\mathbf{a} \sin(\theta) - \cos(\theta) = 0$ si et seulement si $\tan(\theta) = 1$ (car si θ est de cosinus nul, alors $\sin(\theta) - \cos(\theta) \neq 0$) si et seulement si $\theta \in \frac{\pi}{4} + \pi \mathbb{Z}$.

 $\mathbf{b} \sin(\theta) + \cos(\theta) = 0$ si et seulement si $\theta \in -\frac{\pi}{4} + \pi \mathbb{Z}$.

B.2

a La question précédente justifie la non nullité des dénominateurs ci-dessous. Soit \mathcal{A}_1 (resp. \mathcal{A}_2) l'asymptote de \mathcal{H}' d'équation y=x (resp. y=-x).

Soit θ un réel non congru à 0 modulo $\frac{\pi}{4}$.

$$(M(z) \in \Delta \cap \mathcal{A}_1) \Leftrightarrow \left(\exists \lambda \in \mathbb{R}, \left\{ \begin{array}{c} z = 1 + \lambda e^{i\theta} \\ \operatorname{Re}(z) = \operatorname{Im}(z) \end{array} \right) \Leftrightarrow \left(\left(z = 1 + \lambda e^{i\theta}\right) \wedge \left(\lambda = \frac{1}{\sin(\theta) - \cos(\theta)}\right) \right)$$

$$(M(z) \in \Delta \cap \mathcal{A}_2) \Leftrightarrow \left(\exists \lambda \in \mathbb{R}, \left\{ \begin{array}{c} z = 1 + \lambda e^{i\theta} \\ \operatorname{Re}(z) = -\operatorname{Im}(z) \end{array} \right) \Leftrightarrow \left(\left(z = 1 + \lambda e^{i\theta}\right) \wedge \left(\lambda = -\frac{1}{\sin(\theta) + \cos(\theta)}\right) \right)$$

 H_1 (resp. H_2) est donc d'affixe $1 + \frac{1}{\sin(\theta) - \cos(\theta)} e^{i\theta}$ (resp. $1 - \frac{1}{\sin(\theta) + \cos(\theta)} e^{i\theta}$). Le milieu I du segment $[H_1H_2]$ est donc d'affixe :

$$\frac{1}{2}\left(1 + \frac{1}{\sin(\theta) - \cos(\theta)}e^{i\theta} + 1 - \frac{1}{\sin(\theta) + \cos(\theta)}e^{i\theta}\right) = 1 + \frac{\cos(\theta)}{\sin^2(\theta) - \cos^2(\theta)}e^{i\theta}$$

$$(M(z) \in \mathcal{H}' \cap \Delta) \Leftrightarrow \left(\exists \lambda \in \mathbb{R}, \left\{ \begin{array}{l} z = 1 + \lambda e^{i\theta} \\ \operatorname{Re}^2(z) - \operatorname{Im}^2(z) = 1 \end{array} \right) \Leftrightarrow \left(\left\{ \begin{array}{l} z = 1 + \lambda e^{i\theta} \\ (1 + \lambda \cos(\theta))^2 - (\lambda \sin(\theta))^2 = 1 \end{array} \right) \\ \Leftrightarrow \left(\lambda \left(2\cos(\theta) + \lambda (\cos^2(\theta) - \sin^2(\theta)) \right) = 0 \right) \wedge \left(z = 1 + \lambda e^{i\theta} \right) \\ \Leftrightarrow \left((\lambda = 0) \vee \left(\lambda = -\frac{2\cos(\theta)}{\cos^2(\theta) - \sin^2(\theta)} \right) \right) \wedge \left(z = 1 + \lambda e^{i\theta} \right)$$

M est donc le point d'affixe

$$1 - \frac{2\cos(\theta)}{\cos^2(\theta) - \sin^2(\theta)}e^{i\theta},$$

et le milieu de [PM] est donc d'affixe :

$$\frac{1}{2}\left(1+1-\frac{2\cos(\theta)}{\cos^2(\theta)-\sin^2(\theta)}e^{i\theta}\right)=1-\frac{\cos(\theta)}{\cos^2(\theta)-\sin^2(\theta)}e^{i\theta}$$

On reconnaît bien l'affixe de I: le milieu de [PM] est I.

c Si on trace une droite Δ passant par P, non verticale, et de pente différente de 1, de 0 et de -1, on croise les asymptotes de \mathcal{H}' en deux points H_1 et H_2 , ce qui permet de construire le milieu I de $[H_1H_2]$. Le symétrique de P par rapport à I est un nouveau point de \mathcal{H}' .

Il suffit de réitérer cette construction n fois (en prenant des droites différentes deux à deux!) pour construire n points de \mathcal{H}' (outre le point P).