Devoir non surveillé

Endomorphismes sans racine carrée (Centrale MP 06)

Étant donné un espace vectoriel E, on dit que $f \in \mathcal{L}(E)$ est nilpotent s'il existe un entier naturel non nul k tel que $f^k = 0_{\mathcal{L}(E)}$.

1 Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$, et $u \in \mathcal{L}(E)$.

a Montrer que si u est nilpotent, alors $u^n = 0$.

Indication : on pourra raisonner par l'absurde, et construire une famille libre de n+1 vecteurs de E.

b Montrer que si $u^{n-1} \neq 0$, $u^n = 0$, et si $n \geq 2$, alors il n'existe pas d'endomorphisme v de E tel que $v^2 = u$.

2 Ici $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On note D l'endomorphisme de dérivation dans E (i.e. pour tout $f \in E$, D(f) = f'). On suppose l'existence de $V \in \mathcal{L}(E)$ tel que $V^2 = D$. Nous allons montrer que ceci conduit à une absurdité.

- **a** Décrire $\operatorname{Ker} D$.
- **b** Montrer que $\operatorname{Ker} V = \operatorname{Ker} D$.
- ${f c}$ Montrer que D et V commutent.
- **d** Montrer que $V(\operatorname{Id}_{\mathbb{R}})$ est constant, puis en déduire une absurdité.