Devoir non surveillé

Sous-groupes à un paramètre dans $\mathrm{GL}(E)$ où E est un plan vectoriel complexe

E désigne un \mathbb{C} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

On étudie dans ce problème –et dans des cas restreints– si, pour $f \in GL(E)$, il existe un morphisme de groupes de $(\mathbb{R}, +)$ vers GL(E) dont la valeur en 1 est f: on dira alors dans ce cas que f vérifie la propriété K.

Partie A – Préliminaires

On considère deux nombres complexes distincts a et b, ainsi que trois endomorphismes f, p, q de E tels que

$$\begin{cases} \operatorname{Id}_{E} &= p+q \\ f &= ap+bq \\ f^{2} &= a^{2}p+b^{2}q \end{cases}$$

On suppose également que f n'est pas une homothétie.

A.1 Calculer $(f - a \operatorname{Id}_E) \circ (f - b \operatorname{Id}_E)$, et montrer que

$$E = \ker(f - a \operatorname{Id}_E) \oplus \ker(f - b \operatorname{Id}_E).$$

A.2 Établir que $p \circ q = q \circ p = 0$, puis que p et q sont des projecteurs non nuls.

A.3 Vérifier que pour tout $n \in \mathbb{N}$,

$$(*) \quad f^n = a^n p + b^n q$$

A.4 On suppose dans cette question a et b non nuls.

a Montrer que la formule (*) reste valable pour tout $n \in \mathbb{Z} \setminus \mathbb{N}$.

b Soit α et β des « logarithmes complexes » ¹ respectifs de a et b, i.e. des nombres complexes tels que $\exp(\alpha) = a$ et $\exp(\beta) = b$.

Vérifier que

$$\varphi : x \in \mathbb{R} \mapsto e^{\alpha x} p + e^{\beta x} q$$

est un morphisme de groupes de $(\mathbb{R}, +)$ vers $(GL(E), \cdot)$.

Ainsi, φ vérifie la propriété \mathcal{K} .

Partie B – Sous-groupes à un paramètre dans le cas où E est un plan

On suppose ici que E est de dimension 2, et on se donne $f \in GL(E)$.

On appelle valeur propre de f tout scalaire λ tel que $f - \lambda \operatorname{Id}_E$ ne soit pas injectif : $\ker(f - \lambda \operatorname{Id}_E)$ est alors non trivial, et ses éléments non nuls sont appelés vecteurs propres de f associés à la valeur propre λ .

B.1 On suppose que f admet deux valeurs propres distinctes a et b. Trouver des endomorphismes p et q de E tels que l'on puisse appliquer la partie précédente : f vérifie la propriété K.

On suppose dorénavant que f admet une unique valeur propre λ , et on pose $g = f - \lambda \operatorname{Id}_E$, et $n = \dim \ker(g)$.

- **B.2** On suppose que n=2: montrer que f vérifie la propriété K.
- **B.3** On suppose que n=1.
 - a Vérifier que $q^2 = 0$.
 - **b** Calculer f^n pour tout $n \in \mathbb{N}$, puis montrer que f vérifie la propriété K.

^{1.} N'utilisez surtout pas la notation ln(z) si z n'est pas un réel strictement positif!